Chemgeneration News
Share with others


The year‘s most important technologies for sustainability

  • 5-17-2013

The year‘s most important technologies for sustainability

Latest technologies try to cope with challenges of sustainability. We collected five of the most promising technological trends which may get bigger roles in the future.

1. Energy-efficient water purification

Water scarcity is a worsening ecological problem in many parts of the world due to competing demands from agriculture, cities and other human uses. Where freshwater systems are over-used or exhausted, desalination from the sea offers near-unlimited water but a considerable use of energy – mostly from fossil fuels – to drive evaporation or reverse-osmosis systems. Emerging technologies offer the potential for significantly higher energy efficiency in desalination or purification of wastewater, potentially reducing energy consumption by 50% or more. Techniques such as forward-osmosis can additionally improve efficiency by utilizing low-grade heat from thermal power production or renewable heat produced by solar-thermal geothermal installations.

2. Carbon dioxide (CO2) conversion and use

Long-promised technologies for the capture and underground sequestration of carbon dioxide have yet to be proven commercially viable, even at the scale of a single large power station. New technologies that convert the unwanted CO2 into saleable goods can potentially address both the economic and energetic shortcomings of conventional CCS strategies. One of the most promising approaches uses biologically engineered photosynthetic bacteria to turn waste CO2 into liquid fuels or chemicals, in low-cost, modular solar converter systems. Individual systems are expected to reach hundreds of acres within two years. Being 10 to 100 times as productive per unit of land area, these systems address one of the main environmental constraints on biofuels from agricultural or algal feedstock, and could supply lower carbon fuels for automobiles, aviation or other big liquid-fuel users.

3. Enhanced nutrition to drive health at the molecular level

Even in developed countries millions of people suffer from malnutrition due to nutrient deficiencies in their diets. Now modern genomic techniques can determine at the gene sequence level the vast number of naturally consumed proteins which are important in the human diet. The proteins identified may have advantages over standard protein supplements in that they can supply a greater percentage of essential amino acids, and have improved solubility, taste, texture and nutritional characteristics. The large-scale production of pure human dietary proteins based on the application of biotechnology to molecular nutrition can deliver health benefits such as muscle development, managing diabetes or reducing obesity.

4. Self-healing materials

One of the most important features of living organisms is that they are able to repair their physical damage on their own. Think about the skin which heals nicely without any help if injured. Based on this, inorganic construction materials are developed, which are also able to repair their damages on their own, such as cuts, tears or cracks. This technology provides longer life for manufactured goods and reduce the demand of raw materials, as well as greatly improve the safety when used in buildings or airplanes.

5. Organic electronics and photovoltaics

Organic electronics – a type of printed electronics – is the use of organic materials such as polymers to create electronic circuits and devices. In contrast to traditional (silicon-based) semiconductors that are fabricated with expensive photolithographic techniques, organic electronics can be printed using low-cost, scalable processes such as ink jet printing, making them extremely cheap compared with traditional electronics devices, both in terms of the cost per device and the capital equipment required to produce them. While organic electronics are currently unlikely to compete with silicon in terms of speed and density, they have the potential to provide a significant edge in cost and versatility. The cost implications of printed mass-produced solar photovoltaic collectors, for example, could accelerate the transition to renewable energy.

Source: http://www.frogheart.ca/